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The shapes of high-dimensional random walks 

Joseph Rudnickt, Arezki Beldjennat and George Gaspariz 
t Department of Physics, UCLA, Los Angeles, CA 90024, USA 
$ Department of Physics, UC Santa Cruz, Santa Cruz, CA 95064, USA 

Received 22 April 1986 

Abstract. The individual principal radii of gyration are computed for unrestricted random 
walks in a large number of spatial dimensions. A low order expansion in one over the 
dimensionality yields useful information regarding the distribution and average of these 
measures of the extent and spatial anisotropy of high-dimensional random walks. Such 
an expansion may well prove useful in the study of the shapes of other random fractal 
objects. 

1. Introduction 

It has been known for some time that the trail left by a random walker is elongated 
in overall shape rather than spherical (Kuhn 1934, Solc and Stockmeyer 1971, Solc 
1971). This is true whether the walk is self-avoiding or not. The general realisation 
that other random fractal objects occurring in nature-such as the clusters resulting 
from kinetic aggregation or percolation processes-are also non-spherical has been 
more recent (Family et al 1985). In all cases, the anisotropy of the objects has important 
consequences on the nature and behaviour of these systems when in the condensed 
phase (see, for example, Petrie 1979). Indeed, for diffusion-limited aggregation, there 
are strong indications of an intimate connection between the overall shape of the 
cluster and its fractal dimension (Turkevich and Scher 1985, Ball et al 1985). Whilst, 
for random walks, it is well known that self-avoiding walks provide an asymptotically 
accurate model for the natural conformation of long chain polymers (de Gennes 1979 
and references therein, also see Freed 1981). Thus, it is quite reasonable to expect 
interesting relationships between the asphericity of these macromolecules and various 
important physical properties, such as the effect of anisotropy on flow fields or mobilities 
of polymers in various porous media. Other examples can be cited, but it is clear that 
useful physics with interesting and important technological applications will emerge 
from a study of the extent to which random walk processes and other random generators 
of fractals give rise to aspherical objects. 

This paper is a continuation of an earlier effort (Rudnick and Gaspari 1986) to 
quantify the shapes of random walks, focusing on analytical methods rather than 
numerical computations. There are a number of numerical studies in the literature in 
which the shape of either an unrestricted or a self-avoiding random walk is characterised 
in terms of the limiting ratios of the principal radii of gyration (see Bishop and Michels 
1985 and references therein). These quantities are obtained numerically in a straightfor- 
ward way but an analytical study of the individual radii poses considerable challenges. 
In our previous paper, we avoided the analytical difficulties arising in a calculation of 
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the components of the radii of gyration by defining the following parameter, Ad, which 
measures the asphericity of the shape of the random walk: 

where R f  is the square of one of the principal radii of gyration of a random walk in 
d dimensions. The brackets in (1.1) represent an  average over all walks. The analytical 
evaluation of Ad is tractable for both the unrestricted and the self-avoiding walk. In 
the case of the unrestricted walk, one has an  exact result (Rudnick and Gaspari 1986) 

2 ( d + 2 )  
A -- 

d - ( 5 d + 4 )  

while a renormalisation group calculation yields an E expansion for Ad for the 
self-avoiding walk in 4- E dimensions (Aronovitz and Nelson 1986). 

We report here on a study of the individual principal radii of gyration of a 
d-dimensional walk in the regime d >> 1. Our main result consists of the first two terms 
in a l / d  expansion for the individual radii. As expected, our expansion is in accord 
with exact results for unrestricted walks to the appropriate order in l /d .  We find, 
furthermore, that the ratios of the squares of the largest principal radii of gyration lie 
close to the reported numerical values. Since self-avoiding walks have the same 
asymptotic statistics as unrestricted walks in more than four dimensions, our results 
apply to both kinds of walks when d > 4 but are not reliably applied to self-avoiding 
walks when d < 4. However, the results for unrestricted walks may have some relevance 
to real polymer systems at the theta point when the attractive and repulsive monomer 
forces cancel each other (Williams et a1 1981). 

The calculation outlined here is an  example of a promising alternative approach 
to the problem of describing the shape of a random fractal object, and  it may, in spite 
of its limitations, provide useful insights into both average shapes and the distribution 
of shapes of random walks and, possibly, other objects generated by important random 
processes. 

The remainder of this paper is organised as follows. In the next section, the 
definition of key quantities used to describe the shape of the random walks are reviewed 
and some of their properties are developed. Chief among these quantities is the 
asphericity parameter, Ad,  and exact analytical results for unrestricted walks in arbitrary 
dimensions are presented. Section 3 contains the discussion of high-dimensional walks, 
starting with the leading order walk in d + 00 limit. The moment of inertia tensor for 
this walk is derived and its eigenvalues are extracted. The next-to-leading order walks 
are then taking into account, yielding the next-to-leading order contributions to an  
expansion in I / d  of the average radii of gyration of the random walk. We find that 
the ratios of the three largest radii of gyration are as follows: 

( R ; ) :  (Ri ) :  ( R ; )  = 9 :  2.25 : 1 (1.3) 

to within corrections of order ( l /d )2 .  These ratios compare favourably with numerical 
results. In appendix 1, a comparison between the exact results presented in § 2 and  
results that follow from our expansion are shown to match to the appropriate order. 
Appendix 2 contains the derivation of a conjectured form for the distribution of the 
principal radii of gyration. 
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2. Measures of the shape of a random walk 

There are a number of ways to measure the anisotropy of a random walk (Kuhn 1934, 
Solc 1971, Ruben and Mazur 1975, 1977, Rubin et a1 1976) all of which lead to a 
consistent picture of the walk. Here we are interested in developing analytical tech- 
niques to describe the shape of the walk itself and the usual way to quantify the overall 
shape of an  N step random walk starts with the moment of inertia tensor, 7 (Solc 
1971). The elements of 7 are given by 

where xu is the ith component of the position vector of the kth ‘node’ in the walk. 
The quantity ( x i )  is the average over the walk 

Note that there are N + 1 nodes in an  N step walk, and the nodes can be thought of 
as the walker’s ‘footprints’. The d by d tensor has as its eigenvalues the principal 
radii of gyration of the walk. Thus, when diagonalised, 

(2.3) 

The ratios of the individual eigenvalues describe the deviation from sphericity of the 
random walk when the components are averaged over all N step walks. Numerical 
calculations have been carried out by many investigators (for references see the paper 
by Bishop and Michels (1985)) and the results calculated by Solc (1973) for the ratios 
in the large- N limit for unrestricted walks and  Mazur et a1 (1973) for self-avoiding 
walks in three dimensions are typical. These authors find that 

( R ; ) :  ( R : ) :  ( R : )  = 11.8: 2.69: 1.00 (2.4) 

for unrestricted walks and 

( R : )  : ( R  i) : ( R  z) = 14.8 : 3.06 : 1 .OO (2.5) 

when the walks are self-avoiding. 
Unfortunately, the process of averaging the roots, R f ,  of the characteristic equation 

of 7 is not readily susceptible to analytical methods. It has been shown (Rudnick and 
Gaspari 1986, Theodorou and  Suter 1984, Aronowitz and Nelson 1986) how to avoid 
this difficulty by measuring the shape of the random walk in terms of appropriate low 
order invariants of the tensor 7 rather than the individual principal radii of gyration. 
We defined a parameter Ad which measures the asphericity of a random walk and  
thereby provides a useful description of deviations from spherical symmetry applicable 
to various fractal objects. Moreover, the asphericity parameter involves averages that 
can be readily obtained in the case of unrestricted walks and-with some effort-in 
the case of self-avoiding walks. To see this, we first express Ad in terms of the invariants 
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of the moment of inertia tensor, 

which obviously is equal to 

The quantity Ad is seen to be an  invariant and  varies between zero for a spherical 
walk and one for a walk with a single principal radii of gyration infinitely larger than 
the rest. The averages appearing in ( 2 . 7 )  can be exactly calculated for unrestricted 
walks. Using the generating function techniques described in our previous paper, it 
is straightforward to show that, for a hypercubic lattice in the large-N limit, the average 
becomes 

(T,T’) = d (  T;,)  + d ( d  - 1)( TiJ  

which, when substituted into ( 2 . 7 ) ,  reduces to our earlier result: 
2 ( d + 2 )  

A -~ 
- ( 5 d + 4 ) ’  

As d becomes very large, we have 

( 2 . 9 )  

(2.10) 

We see from (2.10) that the infinite-dimensional unrestricted walk is neither spherical 
nor asymptotically linear. To get a deeper understanding of this result and insight 
regarding the shape of the high-dimensional walk we must go beyond the simple 
one-parameter description provided by Ad and study the eigenvalues of fI: directly. 
For walks in high dimensions, this becomes a tractable analytical problem which we 
now discuss. 

3. High-dimensional walks 

To simplify our discussion, we will place the random walker on a d-dimensional 
hypercubic lattice. The walker takes each step along one of the 2d links connecting 
a site to its nearest neighbour. If the walk is not too long, i.e. the number of steps, 
N,  is much less than the spatial dimensionality, the most probable walk has the walker 
choosing a direction at each step that is orthogonal to all the previous steps that were 
taken. At the nth step there are 2 ( d  - n + 1) ways of doing this and 2 ( n  - 1) ways of 
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walking in a direction that is not orthogonal to any previous steps (assuming that all 
previous steps were taken according to the above rule). There are ( 2 d ) N  possible 
unrestricted N step walks from a given site. 

T , ~ =  2d(2d  - 2 ) .  . . (2d  - 2 ( N -  1 ) )  
2 N d !  

( d  - N)!  
- - 

will be of the above kind. Using Stirling’s formula, we have for q0 

T , ~ =  2N exp[ d In( 3 - ( d  - N )  In(%?] 

= ( 2 d ) N  exp( -2 1 7) N2 
( 3 . 2 )  

according to which we may expect our leading order walk to dominate all others when 
N << a. The final result, however, holds more generally than implied by this inequality 
(Gaspari et a1 1987). 

for this leading order walk we renumber and, where 
necessary, reflect coordinate axes so that the walk is first along the positive ‘1’ axis, 
then along the positive ‘2’ axis, and so on. The coordinates of the N + 1 nodes of the 
walk are 

To construct the matrix 

r l =  (O,O, 0,. . . ) 

r 3 = ( l r l r 0 , 0  ,... ) (3.3) 

r2 = (1,0,0, . . . ) 

r4=(1,1,1,0,0 , . . . )  

Thus 

and, in general, 
N-j+1  

l S j < N + l  

(3.4) 

( 3 . 5 )  
N + l s j .  

The non-zero elements of fi. are contained in an N + 1 by N + 1 submatrix with elements 
given by 

1 N- j+1  
N + l  N + l  N + l  

+ ( j - 1 )  1 -  

+ ( N + l - j )  1 -  1 -  

N - i +  I ) (  o-  N;-; 1 

( N + l  N + l  

( N + l  
N - i + 1)  ( N - j + l ) ]  

-- i ( N - j + l )  - 
(N+1)’ 
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where we have assumed for simplicity that j 1, i. The result (3.6) holds only if 0 < i ,  
j < N + 1 .  All other elements of ? are zero. It is a straightforward calculation to show 
that when i > j  the right-hand side of (3.6) is replaced by the same expression with i 
and j interchanged, so that in general 

If we define 

i l . 2  
x1.2 = jlv+l) 

(3.7) 

(3.8) 

where O < X , , ~ <  1 we have 

Tl . i2=x<(1  -x,). (3.9) 

This matrix occurs in a number of different contexts and  its spectrum is known (Fixman 
1962, Forsman and Hughes 1963). In the limit of large N, the x appearing in (3.9) 
can be treated as continuous variables. The operator on the right-hand side of (3.9) 
is then the inverse of the operator -d2/dx2 on the space of functions that go to zero 
at x = 0 and x = 1 .  Its eigenfunctions are 

( L k ( x )  = A sin kx (3.10) 

where k = nn.  It can be verified by substitution that the eigenfunctions of (3.7), for 
the discrete walk, are 

and their associated eigenvalues are 

When n << N + 1 the eigenvalues are approximately given by 

(3.11) 

(3.12) 

(3.13) 

Now, since all walks of the type being considered are topologically equivalent, the 
average square of the principal radii of gyration become, for the largest (R:),  

N 
r 2 n 2 '  

(R:)  = - 

Thus 

( R  :) : ( R  :) : ( R  :) = 1 : a : = 9 : 2.25 : 1 .  

(3.14) 

(3.15) 

It is encouraging that the largest ( R i )  scale linearly with the number of steps in the 
walk. This is the expected dependence of a characteristic linear dimension for an  
unrestricted random walk in arbitrary dimensions. 
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It is seen from the distribution of eigenvalues that the shape of the walk is neither 
spherical nor linear as previously observed. Indeed, it was found that Ad + as d --*CO 

and therefore this limiting value for Ad is an  independent check on the correctness of 
our result for the eigenvalues. This limit follows by noting that for large N 

and as d + 

TrF2 ( N 2 / 9 0 )  2 
( N 2 / 3 6 )  - 5 

A d + y = - - -  
( TrT) 

(3.16) 

(3.17) 

which confirms the correctness of not only the eigenvalues but also the class of walks 
described here as being the leading order contributions for high-dimensional random 
walks. 

The next-to-leading-order walks offer an  additional order in the l / d  expansion 
and an  extra level of complication. Walks which lead to the next order are those where 
the random walker now takes one step in a direction that is not orthogonal to all the 
previous steps. We quantify this walk by identifying the step that is in the same-or 
opposite-direction as a previous step, along with the previous step. This walk will 
be an N step walk in which the ith step is in the positive ‘ i ’  direction with the single 
exception of the lth step which is either in the positive or negative ‘ j ’  direction ( j  < I ) .  
The derivation of the moment of inertia matrix for this walk involves a straightforward 
set of calculations like the one outlined in (3 .6) .  When carried through we obtain the 
remarkably simple result that TIT, the matrix for this walk, is given by 

T1*=( l - l ) ( l* j ) (~)T0( l  - I ) ( l * I ) ( J )  ( 3 . 1 8 )  

where the ‘ k j ’  in the subscript above identifies walks that have the lth step in the + 
or - j  direction. The matrix yo on the right-hand side of (3 .17)  is the moment of inertia 
matrix for the leading order walk. The vectors ( 1  and ( j  are unit vectors in the i and 
j direction and  they are orthogonal, ( I  l j )  = ( j  1 l )  = 0. 

TI + = 70 - ( I o F I A ( 1 I tit, - TOl 1) ( ( 1 I F ( j I + ( I 1) 7 I j )  I ( 1 I ToI 1) ( ( 1 I T ( j  I 1. 
Transforming to a new basis, defined by 

Expanding the right-hand side of (3.16) 

(3.19) 

IA) = IO7 Ij) (3 .20)  

and 

lB) = titlo (3 .21)  

we have 

T~-IA)(~I-I~)(AI+IA)(AI(lITOIl) .  (3.22) 

It can be verified that the perturbation represented by the last three terms on the 
right-hand side of (3.22) is small compared to the leading order contribution, To. 
Furthermore, it is of a particularly simple form. Defining an  appropriate orthogonal 
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basis those last three terms can be written as a two by two matrix, f i*j , l .  The eigenvalues 
of the matrix 

To - fi*j , l .  (3 .23 )  

are thus the eigenvalues of 

To find the eigenvalues of (3 .22)  we look for the poles of 

( To - 6Lj,, - A i ) - I  

where 7 is the identity operator. Defining 

T o - A i G  

(3 .24)  

(3 .25)  

we have for (3 .23)  

( E -  a)-' = E-' + E-'( fi + fiE-'A + fiE-'fiE-'fi + , . . )E-'. (3 .26)  

have been dropped for convenience. The poles of (3 .24)  will be The subscripts on 
the poles of the sum in square brackets in (3 .26 ) .  We have for that sum 

E = A + iaL-'fi + . . . = (fi + AE-'(fi + fiE-'ia + . . . ) 
= A + AZ-'E (3 .27)  

or 

( i - - f iE - I )Z=f i .  (3 .28)  

Note that E is a two by two matrix in the basis set frc*m which we construct the two 
by two matrix A. To find E we must invert the two by two matrix that is 7- M L  
restricted to that basis. The poles of 2 and hence of (3 .24)  will be those of this inverted 
matrix. The poles of the inverse of a non-singular finite matrix are just the zeros of 
the determinant of that matrix, so our task is to find the zeros of det( 7 - fiL-'). A 
few steps lead to the following result for that determinant 

det( i - fiE-') 

..--I 

= 1 - 2 ( A ( E - ' l C )  f (A IE- ' lA ) ( I I  To\ j )  

+ ( c I E- I A ) ( A  I E-' I C )  - ( A  I Z-'I A)( c I E- ' I C )  (3 .29)  

where the vector (C is given by 

= (BI - ~ ~ ~ ~ I ~ o I ~ ~ ~ ~ ~ l ~ o l ~ ~ ~ ~ ~ l .  (3 .30 )  

The condition that the right-hand side of (3 .29)  is zero yields an exact relation satisfied 
by the eigenvalues of TI*. To construct that relationship we note that 

(3 .31)  

where I & )  is the kth eigenvecctor of To, with associated eigenvalue A A .  Each eigenvalue 
of TI= will be close to one of the A k .  We thus express an eigenvalue of TI+ as 

A,  + AAi (3 .32 )  
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where A,  is the closest unperturbed eigenvalue. Using (3.31),  (3.32) and keeping careful 
track of the relative magnitude of various contributions to the equation satisfied by 
AA we obtain, after a series of algebraic manipulations, 

(3.33) 

Contributions to the relationship that are asymptotically less important than those 
retained in (3.33) in the limit of large N have been dropped. The solution of (3.33) 
to the desired order in N is 

This solution gives us information about the full distribution of principal radii of 
gyration to order l / d .  In the body of this paper we restrict ourselves to a calculation 
of the average of AAi over all of the walks we have considered, and  verifying that 
(3.34) is consistent with the exact results presented in § 2 to the required order in l /d.  
This latter comparison is carried out in appendix 1 .  In appendix 2 ,  we develop a 
conjectured form for the distribution of the eigenvalues to order l/d. 

To find the average AA,  we note that the relative weight of each of the walks we 
have been considering is 1/2d. Taking all topologically distinct walks into account 
involves a sum over all I ,  all j < 1 and ‘+’ and ‘-’. We thus have 

The last term in the square brackets of (3.35) is negligible compared to the first two. 
Using (4 i  1 4 i )  = 1 for all i and (4i  I 4k) = 0 if i f k, we are left with 

Thus, to order l / d  we have for the ith eigenvalue 

(3.36) 

(3 .37)  
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Using (3 .13)  we have 

(3 .38)  

The sum on the left-hand side can be carried out exactly using contour integration 
methods. We find 

independent of i. 
Thus 

(3 .39)  

( 3 . 4 0 )  

An immediate consequence of this remarkable result is that the ratios of the three 
largest principal radii of gyration are independent of dimensionality to first order in 
l / d .  High-dimensional walks have roughly the same shapes. 

4. Summary 

In this paper we have studied the shapes of random walks in high spatial dimensions. 
We were able to explicitly calculate the first two terms in a l / d  expansion for the 
square of the principal radii of gyration by considering appropriate subclasses of 
random walks. We show that the ratio of the squares of the principal radii of gyration 
lies close to numerical results in three dimensions and  correspond to walks whose 
shape cannot be classified as either spherical o r  linear. Moreover, we found the 
remarkable result that the ratios of the average principal radii of gyration are indepen- 
dent of dimensionality to order l / d ,  indicating that the shapes of high-dimensional 
walks are insensitive to spatial dimensionality. These results hold for both self-avoiding 
and  unrestricted random walks. Our findings are fully consistent with our earlier 
calculation of the asphericity of random walks and  provides a deeper understanding 
of the high-dimensional limit for the asphericity parameter. 

The analysis presented here provides an interesting and useful theoretical approach 
to characterising and quantifying the notion of a shape of a random walk. We expect 
our work to be fruitfully applied to measure the shapes of closed or polygon random 
walks, percolating clusters and  other fractal clusters as well, which will lead to important 
and novel insights relating the anisotropy of random fractal objects to some of their 
interesting and  technologically important physical behaviour. 

Appendix 1 

In this appendix we demonstrate that the principal radii of gyration calculated as 
described in the main text leads to the correct expansion of the asphericity parameter 
to order l/d. Recall that we had 

( A l . l )  
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which can be written as 

(A1.2) 

Since terms of order l / d  are needed, the A,  in the second term in the numerator can 
be replaced by their leading order expansion, A Y =  N/g2i2 and Z, (A:) and (Z A,)’) 
need only be calculated to order 1 f d. 

We take up the calculation of E2 (A:) first. According to our previous result (see 
equation (3.34)) 

( A ? ) = ( A y ) ’ + -  C C(2AyAAl+AA;) 
1 

2 d ~ < r  i 

After some straightforward manipulations, the last two terms sum up to 

1 c i A Y A O , ( ( ~ ,  I ~4~ I A + ( ~ ,  Ij)(4, I d , < /  k = l  

which allows us to write 

(A1.3) 

(A1.4) 

d i (A:)= 2 C A y h O k ( ( 4 , 1 1 ) ( ~ k I j ) + ( 4 1 1 j ) ( 4 k I l ) ) 2 .  (A1.5) 

The last term in (A1.5) can be further simplified by using the eigenvalue equation 
satisfied by the vector 14,) and Idk) leading to the following expression: 

1 = 1  E = I  ] < I  k,r 

d 1 d 

( A ? ) =  (A:)’+; 1 ( ( ~ ~ ~ ~ ~ l ) ( j ~ ~ ~ ~ j ) + ( I ~ ~ o ~ j ) ( j ~ ~ ~ ~ ~ ) ) .  (A1.6) 

In the asymptotic limit of large N, the j = I term contributes negligibly, so (A1.7) is 
equivalent to 

z = I  , = I  J f l  

which, when combined with (A1.3), yields 

(hP)’(1+2/d) 
Ad = 

((E, A,)’) 

(Al.7) 

(A1.8) 

All that remains is to calculate the average of the trace squared to l / d .  This is easily 
done by noting that the only terms which survive the averaging in the asymptotic limit 
are 

(A1.9) 

Again, neglecting the j = 1 terms and using the fact that the vectors 14i) are normalised, 

(A1.10) 
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Thus our final result is 

( A l . l l )  

( A l .  12) 

which are the correct leading and next-to-leading-order terms in the expansion for Ad 
in powers of l /d.  

Appendix 2 

In this appendix, we develop an expression for the distribution of the principal radii 
of gyration for high-dimensional random walks. The expression reflects contributions 
from the leading and next-to-leading-order walks and is thus accurate to the first two 
orders in l /d.  The analysis leading to the final result is strongly motivated, and we 
believe correct, but no attempt has been made to present a mathematically rigorous 
derivation. 

The n largest individual radii of gyration are the n largest eigenvalue of the tensor, 
7, defined in (2.1). Let these eigenvalues be A I ,  A 2 . .  . , A n  such that 

( f ( A , ,  A 2  * * A n ) ) =  J . . . J P(AI, A 2 . .  . A , ) f ( A , ,  A 2 . .  . A,,)dAl d h 2 . .  . dA, (A2.1) 

where ( f )  is the average o f f  over all N step walks. The Fourier transform of this 
distribution function, p (  K,,  K 2 .  . . K,,), is defined by 

+ K,A,)]P(A, ,  A l . .  . A,,) dAl dh2. .  . dA,. (A2.2) 

By the normalisation of P(AI . . . A,,), it follows that 

p ( O , O ,  * . . , O )  = 1 .  (A2.3) 

To order l /d,  the walks contributing to the average in (A2.1) are ( i )  the leading 
order walks described in 5 3 and (ii) the next-to-leading-order walks, also described 
in that section. The number of walks of the first type is 

T~ = (2d)  exp( - N 2 /  2 d )  = ( 2 d )  ( 1 - f N 2 /  d ). (A2.4) 
By direct counting, one verifies that the number of walks of the second type is 

So, to order l / d  

T O +  71 = (2d)N. 
The A in the first kind of walk are equal to 

(A2.5) 

(A2.6) 

(A2.7) 
N 

A, =- 
r 2 m 2  
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and while for walks of the second kind, 

where (A2.7) is equivalent to (3.13) and (A2.8) follows from (3.34). The quantities in 
the above two expressions are all defined in 0 3. 

a; = ( 4 m  I W 4 m  I A A m  

For convenience of notation, we define 

(A2.9) 

and 

Then p (  K 1 ,  K 2  . . . K,) becomes 

P(K1,  K2 * . * K , )  

=exp[i(A,K,+A2K2..  .+A,&,,)] 

(A2.10) 

(A2.11) 

On expanding the exponentials with respect to K ,  and keeping only a few low order 
terms, a step that is justified a posteriori, the right-hand side of (A2.11) can be written 

exp[i(A,K, +.. .  AnK,)][l--+-c N 2  1 c(2- i (KmaZ)’-2i K m P ;  
2d 2d I j < /  m = l  m = l  

The orthogonality of the eigenfunctions 4 k  yields the following results: 

N 

Thus 

p ( K 1 ,  K 2 , .  . . , K,) = exp[i(A,K, +. . . AJ,,)] 

(A2.12) 

(A2.13) 

(A2.14) 

(A2.15) 

(A2.16) 

We now take the crucial step of exponentiating the term in curly brackets. Although 
we present no rigorous justification for this step other than noting that the exponential 
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gives terms correct to O ( l / d ' )  which is all that is required, we believe it leads to a 
correct result. Thus, (A2.16) is rewritten as 

p ( K i ,  K z l ' . '  9 K n )  

) 1 "  
=exp i(h,+(AAl))Kl+i(A,+(AA2))K2+. . . i(A,,+(Ah,,))K,, -2c ( A m K m ) '  

m 

(A2.17) 
i 

which leads to the following Gaussian form for P ( A l ,  h 2 .  . . A,,): 
n 

P ( h l , h  , . . . A , , ) = n  Pi 
i = l  

where 

d (hi -A;-(AA,})' 
4(A?I2/d  P' = (-) 477(h:)' ex p( - 

(A2.18) 

(A2.19) 

and A;=  N / T 2 i 2 .  
Note that the width of the distribution for the individual radii of gyration is of 

order N and that the width goes to zero as d +CO. Thus, for high-dimensional walks, 
the probability distribution function for the individual principal radii of gyration is a 
strongly peaked function. 
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